
Coinsult

Advanced Manual

Smart Contract Audit

October 23, 2025

CoinsultAudits

t.me/coinsult_tg

coinsult.net

Audit requested by

WEMX

0xA168dC3889C060D77f6B7635c279c121Ce082cb9

Request your audit at coinsult.net

https://twitter.com/coinsultaudits
https://t.me/coinsult_tg
https://temp.coinsult.app/

Global Overview

Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level

Informational

Low-Risk

Medium-Risk

High-Risk

Centralization Risks

Coinsult checked the following privileges:

Contract Privilege

Owner needs to enable trading?

Owner can mint?

Owner can blacklist?

Owner can set fees?

Owner can exclude from fees?

Can be honeypotted?

Owner can set Max TX amount?

More owner priviliges are listed later in the report.

WEMX / Security Audit

Total Pending Acknowledged Resolved

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Description

Owner does not need to enable trading

Owner can mint new tokens

Owner cannot blacklist addresses

Owner can set the sell fee to 0%

Owner cannot exclude from fees

Owner cannot pause the contract

Owner cannot set max transaction amount

Table of Contents

1. Audit Summary

1.1 Audit scope

1.2 Tokenomics

1.3 Source Code

2. Disclaimer

3. Global Overview

3.1 Informational issues

3.2 Low-risk issues

3.3 Medium-risk issues

3.4 High-risk issues

4. Vulnerabilities Findings

5. Contract Privileges

5.1 Maximum Fee Limit Check

5.2 Contract Pausability Check

5.3 Max Transaction Amount Check

5.4 Exclude From Fees Check

5.5 Ability to Mint Check

5.6 Ability to Blacklist Check

5.7 Owner Privileges Check

6. Notes

6.1 Notes by Coinsult

6.2 Notes by WEMX

7. Contract Snapshot

8. Website Review

9. Certificate of Proof

WEMX / Security Audit

Audit Summary

Project Name

Website

Blockchain

Smart Contract Language

Contract Address

Audit Method

Date of Audit

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the

results of the static analysis and the manual code review will be presented. The purpose of the audit is

to see if the functions work as intended, and to identify potential security issues within the smart

contract.

The information in this report should be used to understand the risks associated with the smart

contract. This report can be used as a guide for the development team on how the contract could

possibly be improved by remediating the issues that were identified.

WEMX / Security Audit

WEMX

Wemchain

Solidity

0xA168dC3889C060D77f6B7635c279c121Ce082cb9

Static Analysis, Manual Review

23 October 2025

Audit Scope
Coinsult was comissioned by WEMX to perform an audit based on the following code:

https://wemscan.com/address/0xA168dC3889C060D77f6B7635c279c121Ce082cb9

Note that we only audited the code available to us on this URL at the time of the audit. If the URL

is not from any block explorer (main net), it may be subject to change. Always check the contract

address on this audit report and compare it to the token you are doing research for.

Audit Method

Coinsult’s manual smart contract audit is an extensive methodical examination and analysis of

the smart contract’s code that is used to interact with the blockchain. This process is conducted

to discover errors, issues and security vulnerabilities in the code in order to suggest

improvements and ways to fix them.

Automated Vulnerability Check

Coinsult uses software that checks for common vulnerability issues within smart contracts. We

use automated tools that scan the contract for security vulnerabilities such as integer-overflow,

integer-underflow, out-of-gas-situations, unchecked transfers, etc.

Manual Code Review

Coinsult’s manual code review involves a human looking at source code, line by line, to find

vulnerabilities. Manual code review helps to clarify the context of coding decisions. Automated

tools are faster but they cannot take the developer’s intentions and general business logic into

consideration.

Used tools

Slither: Solidity static analysis framework

Remix: IDE Developer Tool

CWE: Common Weakness Enumeration

SWC: Smart Contract Weakness Classification and Test Cases

DEX: Testnet Blockchains

WEMX / Security Audit

Risk Classification

Coinsult uses certain vulnerability levels, these indicate how bad a certain issue is. The higher

the risk, the more strictly it is recommended to correct the error before using the contract.

Vulnerability Level

Informational

Low-Risk

Medium-Risk

High-Risk

Coinsult has four statuses that are used for each risk level. Below we explain them briefly.

Risk Status

Total

Pending

Acknowledged

Resolved

WEMX / Security Audit

Description

Does not compromise the functionality of the contract in any way

Won't cause any problems, but can be adjusted for improvement

Will likely cause problems and it is recommended to adjust

Will definitely cause problems, this needs to be adjusted

Description

Total amount of issues within this category

Risks that have yet to be addressed by the team

The team is aware of the risks but does not resolve them

The team has resolved and remedied the risk

SWC Attack Analysis

The Smart Contract Weakness Classification Registry (SWC Registry) is an implementation of the

weakness classification scheme proposed in EIP-1470. It is loosely aligned to the terminologies

and structure used in the Common Weakness Enumeration (CWE) while overlaying a wide range

of weakness variants that are specific to smart contracts.

ID

SWC-100

SWC-101

SWC-102

SWC-103

SWC-104

SWC-105

SWC-106

SWC-107

SWC-108

SWC-109

SWC-110

SWC-111

SWC-112

SWC-113

SWC-114

SWC-115

WEMX / Security Audit

Description Status

Function Default Visibility Passed

Integer Overflow and Underflow Passed

Outdated Compiler Version Passed

Floating Pragma Passed

Unchecked Call Return Value Passed

Unprotected Ether Withdrawal Passed

Unprotected SELFDESTRUCT Instruction Passed

Reentrancy Passed

State Variable Default Visibility Passed

Uninitialized Storage Pointer Passed

Assert Violation Passed

Use of Deprecated Solidity Functions Passed

Delegatecall to Untrusted Callee Passed

DoS with Failed Call Passed

Transaction Order Dependence Passed

Authorization through tx.origin Passed

https://github.com/ethereum/EIPs/issues/1469
https://cwe.mitre.org/

SWC-116

SWC-117

SWC-118

SWC-119

SWC-120

SWC-121

SWC-122

SWC-123

SWC-124

SWC-125

SWC-126

SWC-127

SWC-128

SWC-129

SWC-130

SWC-131

SWC-132

SWC-133

SWC-134

SWC-135

SWC-136

WEMX / Security Audit

Block values as a proxy for time Passed

Signature Malleability Passed

Incorrect Constructor Name Passed

Shadowing State Variables Passed

Weak Sources of Randomness from Chain Attributes Passed

Missing Protection against Signature Replay Attacks Passed

Lack of Proper Signature Verification Passed

Requirement Violation Passed

Write to Arbitrary Storage Location Passed

Incorrect Inheritance Order Passed

Insufficient Gas Griefing Passed

Arbitrary Jump with Function Type Variable Passed

DoS With Block Gas Limit Passed

Typographical Error Passed

Right-To-Left-Override control character (U+202E) Passed

Presence of unused variables Passed

Unexpected Ether balance Passed

Hash Collisions With Multiple Variable Length Arguments Passed

Message call with hardcoded gas amount Passed

Code With No Effects Passed

Unencrypted Private Data On-Chain Passed

Maximum Fee Limit Check

Error Code

CEN-01

Coinsult tests if the owner of the smart contract can set the transfer, buy or sell fee to 25% or more. It

is bad practice to set the fees to 25% or more, because owners can prevent healthy trading or even

stop trading when the fees are set too high.

Type of fee

Max transfer fee

Max buy fee

Max sell fee

WEMX / Security Audit

Description

Centralization: Operator Fee Manipulation

Description

0%

0%

0%

Contract Honeypot Check

Error Code

CEN-02

Coinsult tests if the owner of the smart contract has the ability to pause the contract. If this is the case,

users can no longer interact with the smart contract; users can no longer trade the token.

Privilege Check

Can owner pause the contract?

WEMX / Security Audit

Description

Centralization: Operator Pausability

Description

Owner cannot pause the contract

Max Transaction Amount Check

Error Code

CEN-03

Coinsult tests if the owner of the smart contract can set the maximum amount of a transaction. If the

transaction exceeds this limit, the transaction will revert. Owners could prevent normal transactions to

take place if they abuse this function.

Privilege Check

Can owner set max tx amount?

WEMX / Security Audit

Description

Centralization: Operator Transaction Manipulation

Description

Owner cannot set max transaction amount

Exclude From Fees Check

Error Code

CEN-04

Coinsult tests if the owner of the smart contract can exclude addresses from paying tax fees. If the

owner of the smart contract can exclude from fees, they could set high tax fees and exclude

themselves from fees and benefit from 0% trading fees. However, some smart contracts require this

function to exclude routers, dex, cex or other contracts / wallets from fees.

Privilege Check

Can owner exclude from fees?

WEMX / Security Audit

Description

Centralization: Operator Exclusion

Description

Owner cannot exclude from fees

Ability To Mint Check

Error Code

CEN-05

Coinsult tests if the owner of the smart contract can mint new tokens. If the contract contains a mint

function, we refer to the token’s total supply as non-fixed, allowing the token owner to “mint” more

tokens whenever they want.

A mint function in the smart contract allows minting tokens at a later stage. A method to disable

minting can also be added to stop the minting process irreversibly.

Minting tokens is done by sending a transaction that creates new tokens inside of the token smart

contract. With the help of the smart contract function, an unlimited number of tokens can be created

without spending additional energy or money.

Privilege Check

Can owner mint?

Function

function function mintmint((
 address _to address _to,,
 uint256 _amount uint256 _amount
)) publicpublic onlyOwner onlyOwner validAddressvalidAddress((_to_to)) {{
 totalSupply totalSupply == totalSupply totalSupply..addadd((_amount_amount));;
 balanceOf balanceOf[[_to_to]] == balanceOf balanceOf[[_to_to]]..addadd((_amount_amount));;

 _addHolder_addHolder((_to_to));;

 emit emit TransferTransfer((addressaddress((00)),, _to _to,, _amount _amount));;
}}

WEMX / Security Audit

Description

Centralization: Operator Increase Supply

Description

Owner can mint new tokens

Enable Trading

Error Code

CEN-06

Coinsult tests if the owner of the smart contract needs to manually enable trading before everyone can

buy & sell. If the owner needs to manually enable trading, this poses a high centralization risk.

If the owner needs to manually enable trading, make sure to check if the project has a SAFU badge or a

trusted KYC badge. Always DYOR when investing in a project that needs to manually enable trading.

Privilege Check

Owner needs to enable trading?

WEMX / Security Audit

Description

Centralization: Operator enable trading

Description

Owner does not have to enable trading

Ability To Blacklist Check

Error Code

CEN-07

Coinsult tests if the owner of the smart contract can blacklist accounts from interacting with the smart

contract. Blacklisting methods allow the contract owner to enter wallet addresses which are not

allowed to interact with the smart contract.

This method can be abused by token owners to prevent certain / all holders from trading the token.

However, blacklists might be good for tokens that want to rule out certain addresses from interacting

with a smart contract.

Privilege Check

Can owner blacklist?

WEMX / Security Audit

Description

Centralization: Operator Dissalows Wallets

Description

Owner cannot blacklist addresses

Other Owner Privileges Check

Error Code

CEN-100

Coinsult lists all important contract methods which the owner can interact with.

 No other important owner privileges to mention.

WEMX / Security Audit

Description

Centralization: Operator Priviliges

Notes

Notes by WEMX

No notes provided by the team.

Notes by Coinsult

No notes provided by Coinsult

WEMX / Security Audit

Contract Snapshot

This is how the constructor of the contract looked at the time of auditing the smart contract.

// SPDX-License-Identifier: MIT// SPDX-License-Identifier: MIT
pragma solidity ^pragma solidity ^0.70.7..00;;

/**/**
 * @title SafeMath * @title SafeMath
 * @dev Math operations with safety checks that throw on error * @dev Math operations with safety checks that throw on error
 */ */
library SafeMath library SafeMath {{
 function function addadd((uint256 auint256 a,, uint256 b uint256 b)) internalinternal pure pure returnsreturns ((uint256uint256)) {{
 uint256 c uint256 c == a a ++ b b;;
 requirerequire((c >c >;== a a,, "SafeMath: addition overflow""SafeMath: addition overflow"));;
 returnreturn c c;;
 }}

 function function subsub((uint256 auint256 a,, uint256 b uint256 b)) internalinternal pure pure returnsreturns ((uint256uint256)) {{
 requirerequire((b uint256b uint256)) publicpublic balanceOf balanceOf;;
 mappingmapping((address address ==>>; mappingmapping((address address ==>>; uint256 uint256)))) publicpublic allowance allowance;;

 // Holder tracking// Holder tracking
 mappingmapping((address address ==>>; bool bool)) publicpublic isHolder isHolder;;
 uint256 uint256 publicpublic totalHolders totalHolders;;
 uint256 uint256 publicpublic totalTransfers totalTransfers;;

 event event TransferTransfer((address indexed fromaddress indexed from,, address indexed address indexed toto,, uint256 value uint256 value));;
 event event ApprovalApproval((
 address indexed owner address indexed owner,,
 address indexed spender address indexed spender,,
 uint256 value uint256 value
));;
 event event OwnershipTransferredOwnershipTransferred((
 address indexed previousOwner address indexed previousOwner,,
 address indexed newOwner address indexed newOwner
));;
 event event TokensRecoveredTokensRecovered((address indexed tokenaddress indexed token,, uint256 amount uint256 amount));;
 event event NewHolderAddedNewHolderAdded((address indexed holderaddress indexed holder,, uint256 totalHolders uint256 totalHolders));;

 modifier modifier onlyOwneronlyOwner(()) {{
i (d " l ll hi f i ")

WEMX / Security Audit

Website Review

Coinsult checks the website completely manually and looks for visual, technical and textual errors. We

also look at the security, speed and accessibility of the website. In short, a complete check to see if the

website meets the current standard of the web development industry.

Type of check

Mobile friendly?

Contains jQuery errors?

Is SSL secured?

Contains spelling errors?

WEMX / Security Audit

Description

The website is mobile friendly

The website does not contain jQuery errors

The website is SSL secured

The website does not contain spelling errors

Certificate of Proof

Not KYC verified by Coinsult

WEMX

Audited by Coinsult.net

Date: 23 October 2025
Advanced Manual Smart Contract Audit

WEMX / Security Audit

Disclaimer

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the

results of the static analysis and the manual code review will be presented. The purpose of the audit is

to see if the functions work as intended, and to identify potential security issues within the smart

contract.

The information in this report should be used to understand the risks associated with the smart

contract. This report can be used as a guide for the development team on how the contract could

possibly be improved by remediating the issues that were identified.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a

detailed analysis for your own research.

Coinsult is not responsible for any financial losses. Nothing in this contract audit is financial advice,

please do your own research.

The information provided in this audit is for informational purposes only and should not be considered

investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

WEMX / Security Audit

Coinsult

End of report

Smart Contract Audit

CoinsultAudits

info@coinsult.net

coinsult.net

Request your smart contract audit / KYC

t.me/coinsult_tg

coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://temp.coinsult.app/

